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A Practitioner’s Guide to Lag Order Selection
For VAR Impulse Response Analysis∗

Ventzislav Ivanov and Lutz Kilian

Abstract

It is common in empirical macroeconomics to fit vector autoregressive (VAR) models to con-
struct estimates of impulse responses. An important preliminary step in impulse response analysis
is the selection of the VAR lag order. In this paper, we compare the six lag-order selection criteria
most commonly used in applied work. Our metric is the mean-squared error (MSE) of the implied
pointwise impulse response estimates normalized relative to their MSE based on knowing the true
lag order. Based on our simulation design we conclude that for monthly VAR models, the Akaike
Information Criterion (AIC) tends to produce the most accurate structural and semi-structural im-
pulse response estimates for realistic sample sizes. For quarterly VAR models, the Hannan-Quinn
Criterion (HQC) appears to be the most accurate criterion with the exception of sample sizes
smaller than 120, for which the Schwarz Information Criterion (SIC) is more accurate. For persis-
tence profiles based on quarterly vector error correction models with known cointegrating vector,
our results suggest that the SIC is the most accurate criterion for all realistic sample sizes.
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1. INTRODUCTION 
 
Impulse response analysis based on vector autoregressions (VARs) plays a central 
role in modern empirical macroeconomics (for reviews of this literature see 
Pesaran and Smith 1998; Christiano, Eichenbaum and Evans 1999). Many 
researchers study impulse responses in structural or semi-structural VAR models 
based on identifying assumptions about the short-run and long-run responses of 
the economy to individual structural shocks (e.g., Sims 1980; Bernanke 1986; 
Shapiro and Watson 1988; Blanchard and Quah 1989). Other researchers attempt 
to identify long-run equilibrium relationships in the data based on VAR models 
estimated in vector error correction (VEC) form. For these models, one can 
construct impulse responses that trace out the response of error correction terms to 
a one-time shock in the vector of disturbances. The latter type of impulse response 
is known as a persistence profile and, in many cases, can be interpreted as a 
measure of the speed of convergence toward equilibrium (e.g., Pesaran and Shin 
1996; Kilian 1999).   
 It is well known that the dynamic properties of impulse responses may 
depend critically on the lag order of the VAR model fitted to the data. These 
differences can be large enough to affect the substantive interpretation of VAR 
impulse response estimates (see e.g., Hamilton and Herrera 2004; Kilian 2001). 
An important preliminary step in empirical studies is to select the order of the 
autoregression based on the same data used subsequently to construct the impulse 
response estimates. The most common strategy in empirical studies is to select the 
lag-order by some pre-specified criterion and to condition on this estimate in 
constructing the impulse response estimates. A number of such lag-order selection 
criteria are in use in the empirical literature, yet little is known about their 
implications for the accuracy of the implied impulse response estimates.   

In this paper, we use Monte Carlo simulations to compare the six criteria 
most commonly used in applied work. Our metric is the mean-squared error 
(MSE) of a given VAR impulse response estimate obtained by using a lag-order 
selection criterion, normalized relative to the MSE of the same VAR impulse 
response estimate obtained after imposing the true lag order. The six criteria are 
the Schwarz Information Criterion (SIC), the Hannan-Quinn Criterion (HQC), the 
Akaike Information Criterion (AIC), the general-to-specific sequential Likelihood 
Ratio test (LR), a small-sample correction to that test (SLR) proposed by Sims 
(1980), and the specific-to-general sequential Portmanteau test. The latter test 
may be interpreted as a Lagrange Multiplier (LM) test of a given VAR model for 
zero coefficient restrictions at higher-order lags.1 
                                                 
1 For a detailed review of five of the six procedures see Lütkepohl (1993). All criteria considered 
here are motivated by classical statistical theory for unrestricted vector autoregressions. We do not 
pursue Bayesian approaches to model selection, although we note that the SIC may be given a 
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Our objective is to provide recommendations about how to select the lag 
order in applied work if the primary purpose of estimating the vector 
autoregression is to construct accurate impulse response estimates. This is clearly 
not the only purpose vector autoregressions may be used for. For example, one 
might use the same VAR model for real-time forecasting. Given that the 
overwhelming majority of empirical VAR studies is concerned primarily (if not 
exclusively) with impulse response analysis from VAR models (several examples 
are listed below) and given that this study is intended to inform and - if necessary 
- correct current practice, we focus on the effect of lag order selection procedures 
on the accuracy of impulse response estimates.2 

Much of the previous research on VAR lag order selection has focused on 
the ability of lag-order selection criteria to detect the true lag order (see, e.g., 
Nickelsburg 1985; Lütkepohl 1985). We depart from this practice because the lag 
order itself typically is of no economic interest. It matters only to the extent that it 
affects the accuracy of the implied impulse response estimators.  In practice, there 
is no simple mapping from the distribution of lag order estimates to the finite-
sample accuracy of impulse response estimators. Notably, underestimation of the 
VAR lag order may be beneficial for the MSE of the impulse response estimator 
if the reduction in estimation variance outweighs the misspecification bias. For 
this reason, in this paper, we will focus directly on the accuracy of the impulse 
response estimator and discuss results for the lag order estimates only in passing. 

We break new ground along three dimensions. First, to the best of our 
knowledge this practically important question has not been analyzed before with 
the exception of some illustrative bivariate examples presented by Kilian (2001).  
In contrast, in this paper, we present simulation evidence for large-dimensional 
VAR models with many lags of the type routinely estimated by leading 
practitioners in the VAR literature. The VAR models considered include 
anywhere between two and seven variables. 

Second, we study the six lag order selection criteria that are most widely 
used in the applied VAR literature: the LR, SLR and LM test and the AIC, HQC 

                                                                                                                                     
Bayesian interpretation (see Schwarz 1978). The reader is referred to Sims and Zha (1998) for 
further discussion of the Bayesian approach to estimation and inference in VAR models. 
2 Few economists use unrestricted VAR models for forecasting. The consensus in the profession is 
that univariate ARMA models, Bayesian VAR models (which are implemented without the use of 
lag order selection criteria), and – more recently – dynamic factor models are the methods of 
choice for generating out-of-sample forecasts. In contrast, for the objective of studying the 
propagation mechanisms of the economy (in the form of impulse response functions) unrestricted 
VAR models remain the method of choice in the literature. These questions cannot be analyzed in 
a univariate framework or in a standard dynamic factor framework. This is not to say that it might 
not be of interest to study the effect of lag order selection on out-of-sample forecasts from 
unrestricted VARs, but this problem is clearly secondary from the point of view of practitioners 
who use VAR models. 
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and SIC.3 Likelihood ratio tests have been used for example by Sims (1980), 
Blanchard (1989), Keating and Nye (1998), Bernanke and Mihov (1998a) and 
Hamilton and Herrera (2004); the LM test by Galí (1992), Söderlind and Vredin 
(1996), Rotemberg and Woodford (1996); and the AIC, SIC, and HQC have been 
used by Lütkepohl and Reimers (1992), Bernanke, Gertler and Watson (1997), 
and Bernanke and Mihov (1998b), among others. 

Third, as noted by Lütkepohl (1993), a central concern in comparing the 
accuracy of lag-order selection criteria is the generality of the simulation results. 
We therefore employ a variety of data generating processes including monthly 
VAR models, quarterly VAR models and quarterly vector error correction (VEC) 
models, resulting in a total of 180 design points.  

We briefly review the most common lag-order selection procedures in 
section 2. The simulation design and the motivation for our relative MSE criterion 
are discussed in section 3. The results are presented in section 4. We organize the 
discussion around a number of questions of interest to empirical researchers. The 
results are summarized in graphical response surfaces and tables for the three 
types of problems most common in applied work: structural and semi-structural 
impulse responses based on monthly or quarterly VAR models, and persistence 
profiles based on quarterly models in VEC form. Section 5 contains the 
concluding remarks. 

 
2. A REVIEW OF LAG-ORDER SELECTION PROCEDURES 

 
The most common strategy in empirical studies is to select the lag-order by some 
pre-specified criterion and to condition on this estimate in constructing the 
impulse response estimates. This strategy is sometimes criticized on the grounds 
that some researchers use more than one criterion to examine the robustness of the 
estimation results. Such a strategy does not seem to reflect common practice 
among many leading practitioners, however. For example, the empirical 
applications listed in the introduction tend to use just one criterion. Moreover, it is 
not clear how such a sensitivity analysis should be conducted and on what 
statistical basis. Finally - and most importantly - it is not clear how to proceed in 
the likely case that different criteria give different answers. For example, 
Lütkepohl (1990) provides an illustrative example in which he considers three 
alternative lag order selection criteria, yet decides to use only one of them when 
these criteria give conflicting results. Similarly, researchers who combine an 
initial lag order selection based on the AIC with an LM test for serial correlation 
in the error term of the model selected by the AIC, will in practice overrule the 
AIC choice when there is a contradiction. Thus, in the end, even researchers who 
                                                 
3 We do not include the Posterior Information Criterion (PIC) of Phillips and Ploberger (1994), for 
example, because that criterion does not appear to have been used in the empirical VAR literature. 
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investigate the sensitivity of the estimation result tend to favor one criterion at the 
expense of the others.4   
 Although one could in principle report estimation results for a number of 
alternative lag orders, these results will tend to differ in practice and researchers 
will have to take a stand on the relative plausibility of their results. Ultimately 
researchers cannot avoid the trade-offs involved in the choice of lag order 
selection criteria. At a minimum, understanding the properties of each procedure 
will help researchers to make an informed decision. For these reasons, in this 
paper, we follow the common practice of relying on one criterion only in selecting 
the lag order. 

We postulate that the true process is a K-dimensional autoregression of 
order 0p , which may be represented in VAR or in VEC form. Abstracting from 
deterministic regressors (such as seasonal dummies or intercepts), the first three 
lag-order selection criteria are: 

 
2ln( ) ln ( ) ( )NSIC p p K p

N
= Σ +  

22 ln ln( ) ln ( ) ( )NHQC p p K p
N

= Σ +  

22( ) ln ( ) ( )AIC p p K p
N

= Σ +  

 
where N is the effective sample size and Σ  is the quasi-maximum likelihood 
estimate of the innovation covariance matrix Σ  (see Sin and White (1996) for 
further discussion of the theoretical rationale for these criteria). The lag order 
estimate p̂  is chosen to minimize the value of the criterion function for 
{ }: 1p p p≤ ≤ where 0p p≥  (see Quinn 1980; Paulsen and Tjøstheim 1985; 

Quinn 1988). It can be shown that ˆ ˆSIC AICp p≤ for 8N ≥ , ˆ ˆSIC HQCp p≤ for all ,N  
and ˆ ˆHQC AICp p≤ for 16.N ≥  As noted by Granger, King and White (1995), any 
one of these three information criteria may be interpreted as a sequence of LR 
tests with the critical value being implicitly determined by the penalty function.  
No one model is favored because it is chosen as the null hypothesis, and the order 
in which the criterion function is evaluated does not affect the lag order choice.   

In contrast, the use of sequential LR and LM tests requires the explicit 
choice of a significance level. The general-to-specific LR test is implemented as 
                                                 
4 Yet another possible strategy for model selection is to choose the lag order to ensure impulse 
response functions that look “sensible”. This strategy will not be pursued in this paper. It is not 
only at odds with statistical approaches to model selection, but there is no evidence that any of the 
studies by leading practitioners that we cited in section 1 employed this approach. 
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described by Lütkepohl (1993). We follow Lütkepohl (1985) in using the same 
nominal significance level of the LR test at each step in the sequential procedure, 
and we use the asymptotic 2 2( )Kχ critical values. Note that the overall 
significance level of sequential tests will differ from the individual level. The LR 
test involves a sequence of tests of the form   

 
( )( ) ln ( ) ln ( 1)LR i N p i p i= Σ − − Σ − +  

 
for 1,..., 1.i p= −  If the null cannot be rejected, we repeat the test with 1.i i= +  
The test sequence is terminated when we can reject the null hypothesis that 

0p p=  against 0 1p p= +  (or when 1).p =  The resulting tests are denoted by 
LR1 (for the nominal 1% LR test) and LR5 (for the nominal 5% LR test). We also 
consider a small-sample correction of the LR test proposed by Sims (1980). This 
correction takes the form: 
 

( )( ) ( ) ln ( ) ln ( 1) ,SLR i N c p i p i= − Σ − − Σ − +  

 
where ( 1) .c p i K= − +  The corresponding tests will be denoted by SLR1 and 
SLR5. 

The Portmanteau test involves a sequence of tests of the null of no serial 
correlation in the residuals of the VAR(p) model against the alternative that at 
least one of the first s residual autocorrelations differs from zero. Hosking (1981) 
shows that this test can be interpreted as a special case of an LM test of the null of 
no serial correlation. Our Portmanteau (LM) test statistic is: 

 

( )2 1 1 1
0 0

1

ˆ ˆ ˆ ˆ( ) ( ) '
s

i i
i

LM p N N i tr C C C C− − −

=

= −∑ , 

 
where 

1
ˆ ˆ ˆ 'N

i t t it i
C u u N−= +

=∑  and ˆtu  denotes the residual from a VAR(p) process. 
The LM test statistic is calculated for 1,..., ,p p=  in ascending order. If the null of 
no residual correlation is rejected, we add one more lag to the VAR model and 
repeat the test. The test sequence is terminated when the null of no serial 
correlation cannot be rejected (or when ).p p=  Provided that / 0s N →  at a 
suitable rate as ,N →∞  the LM test has an asymptotic ( )2 2 ( )K s pχ − -
distribution where s > p (see Lütkepohl 1993, pp. 150). We adopt the convention 
of setting s equal to the maximum of 1/ 2N (rounded to the nearest integer) and  
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Table 1: Empirical Studies After Which the DGPs Are Modeled 
 

Empirical Study Dimension Lag order Model Frequency Variables (in Order) 
Sims (1986) 

 
6 4 VAR Quarterly Output, investment, price level, M1, unemployment rate, T-Bill 

rate 
Rotemberg-Woodford 

(1996) 
4 Not 

reported 
VAR Quarterly Growth rate of nominal oil price,  

real price of oil, output growth, growth rate of real wage. 
Christiano-Eichenbaum-

Evans (1996) 
7 4 VAR Quarterly Output, price level, commodity prices, FedFunds rate, 

nonborrowed reserves, total reserves, M1 
Galí (1999) 

 
2 4 VAR Quarterly Growth rate of labor productivity, growth rate of hours worked 

Strongin (1995) 
 

5 12 VAR Monthly Output, price level, total reserves, nonborrowed reserve ratio, 
FedFunds rate. 

Eichenbaum-Evans 
(1995) 

5 6 VAR Monthly Output, price level, nonborrowed reserves ratio, U.S.-UK. short-
term interest rate differential and real exchange rate. 

Bernanke-Gertler (1995) 
 

4 12 VAR Monthly Output, price level, commodity prices, FedFunds rate. 

Leeper (1997) 
 

6 18* VAR Monthly T-Bill rate, output, price level, T-Bond rate, total reserves, 
commodity prices. 

Johansen-Juselius (1990) 
 

4 2 VEC Quarterly Finnish data for real balances, real income, short-term interest 
rate, inflation rate.  

Kilian (1999) 
 

2 4 VEC Quarterly Percent change in U.S.-Canadian spot exchange rate, deviation of 
spot rate from monetary fundamental. 

Pesaran-Shin-Smith 
(2000) 

5 2 VEC Quarterly U.K. price level, ROW price level, U.K.-ROW exchange rate, 
U.K. T-Bill rate, short-term ROW interest rate. 

 
NOTES: * with Bayesian prior on lag structure. 
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1.p +  This rule results in choices of s that are similar to values used in many 
empirical studies. The resulting tests are denoted by LM1 (for the nominal 1% 
LM test) and LM5 (for the nominal 5% LM test.5 
 

3. SIMULATION DESIGN AND PERFORMANCE CRITERIA 
 
We consider three classes of DGPs based on monthly and quarterly data sets 
drawn from empirical studies published by leading VAR practitioners. A list of 
these studies is provided in Table 1. We study structural and semi-structural 
impulse responses based on four quarterly VAR models (Sims 1986; Rotemberg 
and Woodford 1996; Christiano, Eichenbaum and Evans 1996; Galí 1999) and 
four monthly VAR models (Bernanke and Gertler 1995; Eichenbaum and Evans 
1995; Strongin 1995; Leeper 1997). These impulse responses are obtained by 
imposing contemporaneous identifying assumptions, with the exception of the 
study by Galí (1999), which uses long-run identifying assumptions instead. For 
precise definitions of these impulse response estimators the reader is referred to 
Christiano, Eichenbaum and Evans (1999), Lütkepohl (1993) and Pesaran and 
Smith (1998).   

We also analyze persistence profiles of three quarterly VEC models: a 
money market equilibrium relationship based on Johansen and Juselius (1990), an 
exchange rate arbitrage condition based on monetary fundamentals from Kilian 
(1999), and a VEC model by Pesaran, Shin and Smith (2000) that involves two 
equilibrium relationships: the uncovered interest parity condition and the 
purchasing power parity condition. The latter are treated separately in the 
analysis.6 Note that persistence profiles (which may be viewed as generalized 
impulse response functions) differ from conventional impulse response functions 
and will in general have different statistical properties. For a precise definition of 
persistence profiles and their relationship to other impulse response estimators see 

                                                 
5 With one exception, these lag order selection criteria are known to be robust to the presence of a 
unit root in the autoregressive lag order polynomial. Notably, Paulsen (1984) formally establishes 
the consistency of the SIC and HQC in the presence of a unit root. To the best of our knowledge, 
no formal analysis exists of the properties of the AIC in the unit root case. Watson (1994, p. 2860) 
shows that for 1p ≥ the LR and LM tests remain asymptotically valid even in the presence of a 
unit root.  
6 As Wickens (1996) shows, estimated multiple cointegrating vectors cannot be given an economic 
interpretation without additional a priori information. In estimating the VEC models, we therefore 
impose coefficient values on the cointegrating vectors that are consistent with economic theory, 
even when the original studies rely on estimated cointegrating vectors. Specifically, for the 
Johansen-Juselius model we impose that real money demand is homogeneous of degree 1 in 
income and that nominal interest rates and inflation rates are stationary. For the Pesaran-Shin-
Smith model we impose that uncovered interest parity and purchasing power parity hold in the 
long run. 
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Pesaran and Smith (1998). There are no monthly VEC models in our simulation 
study, because we could not find any examples in the literature of persistence 
profile estimation on monthly data. 

For the quarterly data, we postulate values of { }0 2, 4,6p ∈  for each DGP 

and for the monthly data values of { }0 4,6,8,10 .p ∈ 7 The DGPs are constructed as 
follows: For each data set and value of 0 ,p  we fit a VAR( 0p ) model to the data 
used in the original empirical study. The resulting model estimate is subsequently 
treated as a DGP for the simulation study. Note that each such model will have 
different parameter values by construction. The hope is that the resulting DGPs 
will be more representative for empirical VAR studies than any ad hoc choice of 
parameter values would have been. In fitting the VAR models, we impose unit 
roots and cointegration constraints whenever the original studies did so, and we 
closely follow the original studies in including deterministic regressors (seasonal 
dummies, dummies, intercepts) and enforcing exogeneity constraints. The model 
innovations are postulated to be Gaussian white noise with the same innovation 
covariance matrix as the fitted VAR( 0p ) model. For each DGP we consider 
several sample sizes .T N p= +  For quarterly data, {80,100,120,T ∈ 160,200} 
and for monthly data {240,T ∈ 300,360,480,600}.  Note that we only consider 
sample sizes that are relevant for empirical research using quarterly and monthly 
data.  Altogether, our simulation study includes 180 different design points.8 For 
quarterly data, we set p = 8 and for monthly data p = 12. This choice ensures that 
in all cases in the simulation study the true lag order is included in the set of lag 
orders considered. The choice of 0p  in many cases has nontrivial implications for 
the shape and persistence of the implied population impulse response functions. 
Figure 1 provides four examples for how responses to a given shock may change, 
as we vary 0.p  

For each design point, we generate 5,000 independent draws of data of 
length .T  Initial values are obtained by randomly drawing blocks of data of length 

0p  with replacement from the original data set. For each draw { } 1

T
t t

y
=

, we select 
the  best-fitting  VAR model  based on each of the nine lag order selection criteria  
 

                                                 
7 Few applied users would consider more than 12 lags in selecting the order of a VAR model for 
monthly post-war data and most studies end up using 5 or 6 lags. We did not consider 0p  = 12 for 
monthly data because such a design point may have favored the AIC, given its tendency to overfit 
asymptotically.   
8 For the DGP based on Pesaran et al. (2000), the point estimate for 0 6p =  was explosive. We 
therefore eliminated this design point from the analysis.  
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Figure 1: Effect of 0p  on Selected Population Impulse Response Functions in  
Eichenbaum-Evans Model 

 
 
 
 
 
 
 
 
 
  

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
(SIC, HQC, AIC, LR1, LR5, SLR1, SLR5, LM1, LM5).9 In fitting the VAR 
models, we impose whatever unit root, exogeneity, or cointegration restrictions 
hold for the underlying DGP.10 We are interested in the impulse response 
functions of the VAR system up to horizon h. For each of the seven VAR model 
estimates, we compute the 2 ( 1)K h +  implied pointwise impulse response 
coefficient estimates using the same identifying assumptions as the original 
studies in Table 1. We restrict ourselves to horizons of up to four years for the 

                                                 
9 We do not consider the possibility that p = 0 in the simulation study. This simplifying 
assumption involves little loss of generality, because most macroeconomic time series tend to be 
so persistent that a VAR(0) model is a priori implausible. 
10 In particular, for the VEC models the cointegrating vector is assumed to be known and is 
imposed before the lag order is selected. As shown in section 4, selecting the lag order prior to 
imposing the cointegrating vector would make little difference for our results. 
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quarterly  and  monthly  VAR  models  and  horizons  of  up  to  six  years  for the 
persistence profiles.11 Finally, for each criterion, we calculate the mean squared 
deviation of each of the impulse response coefficient estimates from their true 
values, which will be referred to as the mean-squared error (MSE) of the estimate. 
 An obvious difficulty in comparing MSE results for different impulse 
response coefficients is that the size of the MSE will be sensitive to the size of the 
underlying impulse response coefficient. This makes it impossible to compare the 
MSE of any two impulse response estimates directly. We address this problem by 
expressing the MSEs relative to the corresponding MSEs based on knowing the 
true lag order. This normalization allows us to average results across horizons for 
the same impulse response function, across different impulse responses for the 
same horizon, and across DGPs. Specifically, the relative MSE for a given lag 
order selection method is given by: 
 

2

, 0 , 0

2

, 0 , 0

ˆ ˆ( | ) ( )

ˆ ( ) ( )

jk i jk i

jk i jk i

p p p

p p

θ θ

θ θ

⎡ ⎤−⎣ ⎦
⎡ ⎤−⎣ ⎦

, 

 
where the expression ,jk iθ  denotes the population response of variable j to shock k 

at horizon i, and ,
ˆ

jk iθ  denotes the corresponding estimator. These quantities 
depend on the lag order of the underlying VAR model. Here 0p  denotes the true, 
but in practice unknown VAR lag order of the data generating process, and 0ˆ |p p  
is the lag order selected by a given method conditional on the data having been 
generated by a VAR( 0p ) process. 
 Throughout the paper, averages of these MSE ratios are calculated as 
geometric means rather than arithmetic means.12 In a preliminary investigation, 
we also computed results based on the ratios of the mean-absolute error of the 
impulse response estimates. These results tended to be qualitatively similar.   
 

 

                                                 
11 In very small samples, there is some probability that the persistence profile estimate is explosive 
(in the sense of diverging toward infinity). We follow Pesaran and Shin (1996, pp. 141) in 
discarding these rare explosive draws. 
12 Arithmetic means of ratios may be misleading. Consider a sequence of MSEs for two methods 
A and B: MSE(A)= [2 1 4] and MSE(B)=[3 2 2]. Then the arithmetic mean of the sequence of 
pointwise ratios MSE(A)/MSE(B)=[2/3 1/2 4/2 ] is 1.06, suggesting that B is more accurate than 
A, yet the arithmetic mean of the pointwise reciprocals MSE(B)/MSE(A)=[3/2 2/1 2/4] is 1.33, 
suggesting that A is more accurate than B. We therefore compute geometric means by 
exponentiating the arithmetic mean of the log-differences of MSE(A) and MSE(B).   
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4. SIMULATION RESULTS 
 
Given the large number of design points, the simulation results are summarized in 
graphical response surfaces and tables. We begin with the discussion of some 
general regularities. We organize the discussion around a number of questions of 
interest to empirical researchers.  
 
Question 1: How does the overall ranking of the criteria depend on the 
sample size? 
 
Tables 2 and 3 are based on overall averages of the relative MSEs for each class 
of DGPs. These averages are computed for the impulse responses of all variables 
with respect to all underlying shocks and at all horizons. The results in Tables 2 
and 3 show that the choice of lag order selection criterion is practically important 
for impulse response analysis, and that there are important differences across 
alternative lag-order selection criteria.  

Table 2 shows the average relative MSE for each criterion as a function of 
T only. The results in Table 2 are appropriate if a researcher cares equally about 
all horizons h and is completely unsure about the lag order 0p  of the underlying 
process. For impulse responses based on monthly VAR processes, we find that the 
AIC-based estimates are always at least as accurate as those based on other 
criteria. For T = 240 only the HQC is as accurate as the AIC, and for larger 
sample sizes the AIC dominates the other criteria across the board. In contrast, for 
impulse responses based on quarterly VAR processes, the AIC cannot be 
recommended. The SIC dominates the other criteria for sample sizes up to 120 
quarters, whereas for all larger sample sizes the HQC is the most accurate 
criterion. Finally, for persistence profiles based on quarterly VEC processes, the 
SIC dominates the other criteria for all sample sizes considered. Note  that  the  
latter  results  are  not  directly  comparable  to  the quarterly VAR results both 
because the statistic of interest differs and because the VEC models are estimated 
subject to the cointegration constraint, whereas the VAR models are estimated by 
unrestricted least-squares.   

Since the LR, SLR and LM tests at the nominal 1% level are 
systematically more reliable than the corresponding nominal 5% tests, we report 
only the former. The sequential LR1 and LM1 tests tend to perform poorly for all 
three classes of models, especially for small sample sizes. The SLR1 test in all 
cases is more accurate than the LR1 test, often by a wide margin. It also is more 
accurate than the LM1 test in most cases, but even the SLR1 test is clearly 
dominated by other criteria for all sample sizes. On the basis of these results, and 
keeping in mind the purpose of this study, we recommend that applied users rely 
on the AIC for all monthly VAR models, the HQC for all quarterly VAR models 
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with the exception of sample sizes up to 120 quarters, for which the SIC is 
preferred, and the SIC for all quarterly VEC models. The simulation evidence 
does not support the use of sequential LM, LR or SLR tests in applied work.   

 
 

Table 2: Average MSE Ratio for Impulse Response Estimates by Criterion  
Relative to Model Based on True Lag Order 

 
(a) Monthly VAR Models 

 
T AIC HQC SIC LR1 SLR1 LM1 

  80 0.97 0.97 0.99 1.17 1.00 1.10 
100 0.99 1.03 1.07 1.11 1.01 1.07 
120 1.00 1.04 1.15 1.08 1.02 1.05 
160 1.00 1.05 1.28 1.06 1.02 1.03 
200 1.00 1.06 1.38 1.04 1.02 1.03 

 
 

(b) Quarterly VAR Models 
 

T AIC HQC SIC LR1 SLR1 LM1 
  80 1.76 1.18 0.79 2.17 1.14 1.36 
100 1.28 0.93 0.89 1.74 1.09 1.20 
120 1.10 0.97 0.96 1.60 1.09 1.17 
160 1.06 1.00 1.10 1.43 1.10 1.15 
200 1.06 1.01 1.17 1.34 1.11 1.14 

 
 

(c) Quarterly VEC Models 
 

T AIC HQC SIC LR1 SLR1 LM1 
  80 3.88 1.04 0.70 5.38 1.48 1.58 
100 1.37 0.90 0.79 3.26 1.15 1.15 
120 1.05 0.94 0.85 2.26 1.10 1.04 
160 1.02 0.98 0.91 1.58 1.07 0.99 
200 1.02 0.99 0.95 1.34 1.05 0.99 

 
NOTES:  Averages of ratios are calculated as geometric means. 
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Table 3: Selected Average MSE Ratios for Impulse Response Estimates 
 

(a) Monthly VAR Models 
 

T AIC/HQC AIC/SIC AIC/LR1 AIC/SLR1 AIC/LM1 
240 1.00 0.98 0.83 0.97 0.88 
300 0.97 0.93 0.89 0.98 0.93 
360 0.96 0.87 0.92 0.98 0.95 
480 0.95 0.78 0.95 0.98 0.97 
600 0.94 0.73 0.96 0.98 0.97 

 
 

(b) Quarterly VAR Models 
 

T HQC/AIC HQC/SIC HQC/LR1 HQC/SLR1 HQC/LM1 
  80 0.67 1.50 0.55 1.04 0.87 
100 0.72 1.05 0.53 0.85 0.78 
120 0.88 1.00 0.60 0.88 0.82 
160 0.94 0.91 0.70 0.91 0.87 
200 0.96 0.86 0.76 0.92 0.89 

 
 

(c) Quarterly VEC Models 
 

T SIC/AIC SIC/HQC SIC/LR1 SIC/SLR1 SIC/LM1 
  80 0.18 0.67 0.13 0.47 0.44 
100 0.57 0.87 0.24 0.68 0.69 
120 0.80 0.90 0.38 0.77 0.81 
160 0.89 0.93 0.57 0.85 0.91 
200 0.93 0.96 0.71 0.90 0.96 

 
NOTES:  Averages of ratios are calculated as geometric means. 

 
 

Question 2: What are the costs of not knowing the true lag order? 
 
So far we have focused on the ranking of the criteria as a function of the sample 
size. A closely related question is how quantitatively important the effects of lag 
order uncertainty are relative to knowing the true lag order. Table 2a documents 
the fact that the success of a lag order selection criterion in impulse response 
analysis is not directly related to its ability to estimate accurately the true lag 
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order. For T = 240, for example, all three information criteria result in more 
accurate impulse response estimates than would have been obtained by imposing 
the true lag order. It can be shown that these criteria all tend to underestimate the 
true lag order for T = 240 in Table 2a, yet their MSE ratios are slightly below 
one.13 The explanation is that in small samples the bias induced by using a lower 
lag order than 0p  is more than offset by the reduced variance of the impulse 
response estimator. Interestingly, the AIC-based and HQC-based impulse 
response estimates both are not only more accurate than those based on the true 
lag order, but they also are more accurate than the impulse response estimates 
based on the SIC. The reason for this outcome is that the SIC tends to 
underestimate severely the true lag order in small samples. Although slight 
underestimation is beneficial for the MSE of the impulse responses for T = 240, 
severe underestimation is a serious problem in this case. 

To illustrate further this phenomenon, we also constructed the average 
MSE of the monthly VAR models for a grid of fixed lag orders. Table 4 shows 
the average MSE based on lag orders of 0p i+  relative to that for models based 
on 0.p  For expository purposes we set 0 6p =  and let { 5, 4, 3, 2, 1, 1, 2,i∈ − − − − −  
3}.  
 
 
Table 4: Average MSE Ratio for Impulse Response Estimates by Lag Order 

Relative to Model Based on True Lag Order 
 

Monthly VAR Models with Fixed Lag Order 
 
T 0 5p −  0 4p −  0 3p −  0 2p −  0 1p −  0 1p +  0 2p +  0 3p +  

240 1.00 0.95 0.94 0.96 0.97 1.08 1.16 1.24 
300 1.10 1.04 0.99 0.99 0.99 1.07 1.14 1.22 
360 1.19 1.11 1.04 1.03 1.00 1.07 1.14 1.21 
480 1.37 1.25 1.11 1.09 1.02 1.07 1.13 1.20 
600 1.54 1.38 1.19 1.14 1.04 1.07 1.13 1.20 
 
NOTES: Averages of ratios are calculated as geometric means. True lag order fixed  

  at 0 6.p =  
 
 

                                                 
13 To conserve space, we do not report tables for the distribution of lag-order estimates. The reason 
is that for each model, true lag order 0p and sample size we would require a different table.  
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It is evident that the results are not symmetric about 0.p  Whereas overfitting 
always raises the MSE relative to the true lag order, a moderate degree of 
underfitting may actually lower the MSE in small samples. These gains dissipate 
quickly as T  increases. For larger T  the losses from overfitting and underfitting 
become almost symmetric.   

Table 4 also illustrates the increasing cost of a strong degree of 
underfitting as the sample size is increased. This fact helps to explain why the 
accuracy of the SIC in Table 2a (and to a lesser extent that of the HQC) actually 
deteriorates with increasing sample size. Whereas the AIC’s MSE quickly 
approaches that for the true model in Table 2a, the MSEs of the SIC- and HQC-
based impulse response estimators worsen, as the sample size is increased. Note 
that this happens despite the consistency of the SIC and HQC for the true lag 
order 0.p    

This deterioration of the MSE is closely related to the fact that the 
estimator of the parameter vector of models obtained by consistent model 
selection need not converge uniformly to the true parameter vector (see Kabaila 
1995; Pötscher 1995). Note that for small T, the SIC (and to a lesser extent the 
HQC) is strongly downward biased relative to 0p . In very small samples, the bias 
induced by the underestimation of 0p  is more than offset by a large variance 
reduction. In short, parsimony is beneficial for the MSE of the impulse response 
estimator. As the sample size increases, however, this variance effect becomes 
less and less important and the effect of misspecification bias becomes dominant. 
Although the degree of underestimation by the SIC (and by the HQC) diminishes 
as ,T →∞  as expected, in practice, it may cause a large increase in the relative 
MSE of the impulse response estimator. Only for sample sizes much larger than 
those considered here, this bias will vanish and the MSE ratios of the SIC will 
begin to improve. For example, it can be shown that the SIC ratio drops from 1.38 
for 600T =  to 1.28 for 1200T =  and that of the HQC drops from 1.06 to 1.01.   
Asymptotically, both ratios will approach unity. 
 In contrast, the AIC lag order estimates are clustered increasingly close to 
the true lag order with increasing sample size. The probability that the AIC 
underestimates the true lag order shrinks toward zero, as the sample size 
increases. This finding is consistent with standard theoretical results. In addition, 
the probability of the AIC overestimating the true lag order shrinks almost to zero 
for T = 600, in line with theoretical results by Paulsen and Tjøstheim (1985), who 
showed that asymptotically the AIC will estimate the true lag order with 
probability 99.0% for 4K = , 99.8% for 5K =  and even higher probability for 

6.K ≥  This fact helps to explain the relative performance of the AIC, SIC and 
HQC for large T.   
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Table 2b shows the corresponding results for the quarterly VAR models. 
For small T, all criteria but the SIC are associated with dramatic losses in 
accuracy relative to the true lag order model, in some cases by a factor of more 
than two. For larger samples, the relative MSE of all criteria but the SIC improves 
in Table 2c. As in the case of the monthly VAR models, the worsening MSE ratio 
of the SIC for larger T reflects the strong downward bias of this lag order 
selection criterion in small samples. It can be shown that for our DGPs the SIC 
systematically underestimates the true lag order for all sample sizes. This small-
sample bias appears to be beneficial for the accuracy of the impulse responses for 
small T, regardless of 0p , but it is a liability for larger T, especially when 0p  is 
large.  In contrast, the comparatively high MSE of the AIC- (and to a lesser extent 
of the HQC-) based estimates for T = 80 reflects the fact that these criteria tend to 
overestimate severely the true lag order. For larger T, this tendency weakens.  
Whereas the AIC continues to overestimate the true lag order to some extent, the 
HQC estimates closely track 0p . This fact helps to explain the low MSE ratios of 
the HQC in Table 2b. We conclude that a high degree of parsimony is beneficial 
in very small samples, but that for larger sample sizes both overestimation and 
underestimation of the lag order have large costs in terms of the MSE of the 
impulse response estimates. The HQC minimizes these two risks. 

Table 2c shows the corresponding results for the quarterly VEC model. 
Again in small samples - with the exception of the SIC - MSE ratios relative to 
the true model are high, reaching a factor of  more than 5 for the LR1 tests, of 
about 1.5 for the SLR1 tests, of about 1.6 for the LM1 tests and of almost 4 for 
the AIC. For larger sample sizes, the relative accuracy of all criteria improves.  
The reasons for the relative ranking of the AIC, HQC and SIC for T = 80 are the 
same as for the quarterly VAR models. For such small sample sizes parsimony is 
beneficial and criteria that tend to overfit such as the AIC (and to a much lesser 
extent the HQC) perform poorly. Unlike in the quarterly VAR case, however, the 
SIC performs very well even for larger sample sizes. Although the SIC has a 
similar tendency to underfit – especially when 0p  is large – this tendency does 
not seem to affect the accuracy of the estimated persistence profiles.  

 
Question 3: How large are the differences in accuracy across criteria? 
 
We now turn to the closely related question of how quantitatively important the 
differences between alternative criteria are. Table 3a shows that the gains from 
choosing the best criterion can be substantial both for small and for large sample 
sizes. For example, for a monthly VAR model with T = 600, the AIC can be 
expected to reduce the MSE of the impulse responses by up to 27% relative to the 
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SIC.14 For T = 240, the gains range from 0% relative to the HQC and 2% relative 
to the SIC to 17% relative to the LR1 test.   

Table 3b shows the corresponding results for the quarterly VAR models. 
The relative performance of the three information criteria in Table 3b depends on 
the sample size. For T = 80, the SIC promises gains of up to 55% (33%) relative 
to the AIC (HQC). For T = 100, these gains diminish and for T = 120, the SIC and 
the HQC are virtually tied, both having MSEs about 12% lower than the AIC. For 
larger sample sizes, the ranking of the SIC and the HQC is reversed, and the HQC 
promises MSE reductions of up to 4% (14%) relative to the AIC (SIC).   

Table 3c shows the corresponding results for the quarterly VEC model. 
The differences in accuracy are dramatic. The SIC tends to improve the accuracy 
of the persistence profiles by 82% (33%) relative to the AIC (HQC) for T = 80.  
Relative to the LR1 test the relative gains are even larger, reaching 87%. The 
relative gains diminish as the sample size increases, but they still amount to 7% 
(4%) relative to the AIC (HQC) for T = 200 and up to 29% for the other criteria.  

 
Question 4: How sensitive are the results to the impulse response horizon? 
 
An important question for applied users is to what extent the results in Table 3 
hold for alternative horizons h. In applied research, we may care more about some 
horizons than about others. For example, a policy-maker may be primarily 
concerned about the responses at horizons of one year or less. A standard 
argument in forecasting is that the prediction mean-squared error may be reduced 
in small samples if the model is slightly underfit. Similar arguments apply to 
impulse response analysis. A natural conjecture therefore is that highly 
parsimonious lag order selection criteria such as the SIC may produce impulse 
response estimates that are more accurate at least at short horizons than the AIC 
for example. On the other hand, parsimonious lag order selection criteria may fail 
to capture complicated and non-smooth dynamics of impulse response functions, 
especially at longer horizons, as shown by Kilian (2001).   

It is unclear a priori which of these effects will dominate in practice. We 
therefore disaggregate the MSE results in Table 3 by time horizon. These 
disaggregated results will be appropriate if we know T and the range of horizons 
we are interested in, but we have no idea whether 0p  is small or large. Given the 
large number of simulation results and the relatively poor performance of 
sequential LM and LR tests, we do not provide detailed results for each criterion, 
but focus on the three penalized likelihood criteria. Our main finding is that 
                                                 
14 In this example, Table 2a shows that the MSE-ratio of the AIC is 1.00 and the MSE ratio of the 
SIC is 1.38. We obtain a reduction of (1.38-1.00)/1.38=27.54 percent relative to the SIC’s MSE 
ratio of 1.38. This gain is represented as a ratio of 0.73 for AIC/SIC in Table 3a. The slight 
difference is due to the rounding of the results in Table 2a.  
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parsimony matters, but that the required degree of parsimony may differ greatly 
depending on the sample size and class of DGP.  

Figures 2-4 show selected response surfaces for the ratios 
MSE(SIC)/MSE(AIC), MSE(HQC)/MSE(AIC) and MSE(SIC)/ MSE(HQC) as a 
function of T and h. For the reader’s benefit, we also impose a horizontal plane 
indicating MSE ratios of unity.  Figure 2a shows a surface that rarely drops below 
unity, indicating that the AIC has smaller MSE than the SIC throughout with the 
exception of a small region for T = 240 and intermediate horizons. The most 
important gains of the AIC relative to the SIC occur at horizons of up to two 
years. Consistent with the examples in Kilian (2001), the response surfaces in 
Figure 2a are quite choppy for the first two years after the shock. At short 
horizons, the MSE of the SIC is up to 1.7 times as high as that of the AIC. For 
large h and small T, the surface drops back toward 1. There is a clear tendency for 
the relative accuracy of the AIC to increase with the sample size, however, and at 
longer horizons the MSE ratio may easily exceed 1.2 for T large.   

Figure 2b shows the average MSE of the AIC relative to the HQC. In 
addition to the same anomaly as in Figure 2a for small T and intermediate h, we 
observe a second region for which the surface drops below unity at horizons in 
excess of three years and T up to 480. This drop is most pronounced for T = 240. 
Even for T = 240, however, as Table 3a shows, the average performance of the 
AIC is still as good as that of the HQC. For larger T, the relative gains of the AIC 
for horizons shorter than three years easily compensate for the slight advantages 
of the HQC for horizons in excess of three years.  

For quarterly VAR models, Figure 3a shows that the HQC in most cases is 
more accurate than the AIC. The MSE ratio may fall as low as 50% in small 
samples. Only for large sample sizes and short horizon, this pattern is reversed 
and the HQC actually has an MSE that exceeds that of the AIC by up to 10%. 
Figure 3b shows the corresponding MSE(SIC)/MSE(HQC) ratios. The MSE ratio 
is increasing in the sample size and decreasing in h, and reach a factor of almost 
1.5 for large T and small h. Figure 3b suggests that, except for T < 120, the HQC 
is clearly the preferred criterion for impulse response analysis in quarterly VAR 
models for all but the longest horizons of interest. For T < 120 the SIC in turn is 
most accurate for all but the shortest horizons. Thus, the tradeoffs between 
alternative horizons are minimal. In both subplots, the response surfaces are much 
smoother than for the monthly models. The apparent reason is that the population 
impulse response functions for the quarterly VAR models tend to be much 
smoother than for the monthly VAR models. 

For the quarterly VEC models in Figure 4a, the HQC uniformly dominates 
the AIC. The relative gains from using the HQC range from an MSE reduction of 
more than 80% for the smallest sample sizes to a few percent for T = 200. Figure 
4b shows that the SIC dominates the HQC (and by implication the AIC) for most 
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Figure 2 
Relative MSEs by Horizon and Sample Size 

Monthly VAR Models 
 

 
 

 
 
 

     NOTES:   Average MSE ratios across all impulse response estimates  
        for all DGPs within model class.
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Figure 3 
Relative MSEs by Horizon and Sample Size 

Quarterly VAR Models 
 

 
 

 
 

 
       NOTES:  See Figure 2. 
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Figure 4 
Relative MSEs by Horizon and Sample Size 

Quarterly VEC Models 
 

 
 

 
 
 

       NOTES:  See Figure 2. 
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horizons, with the exception of the first few quarters. At longer horizons the gains 
from using the SIC may be as large as 60% relative to the HQC for T = 80, but 
they decline to about 15% for T = 200. In contrast, for short horizons, the worst 
loss from using the SIC is a less than 10% increase in the MSE for T = 80. Thus, 
overall, the SIC compares favorably to the HQC when used for the purpose of 
constructing persistence profiles based on quarterly VEC models. The relatively 
smooth response surfaces reflect the fact that the underlying population 
persistence profiles themselves are fairly smooth. There are no significant 
tradeoffs across horizons of interest. 

 
Question 5: Why are the results different for the three types of DGPs? 
 
Our results show that the distinction between different classes of models and 
types of impulse responses is practically important. For example, the practical 
recommendations for quarterly and for monthly VAR models differ 
systematically. There are two basic reasons for this result. One is the difference in 
sample sizes. Although one could attempt to control for the sample size by 
considering the same sample sizes for quarterly and for monthly VAR models 
such an exercise would be of little interest for applied work. For example, sample 
sizes of 240 to 600 amount to time spans of 60 to 150 years of quarterly data. 
Clearly, such large samples are unrealistic for quarterly data.   

The other reason for the differences in results is that the dynamics 
embodied in quarterly and monthly VAR models differ (even controlling for the 
sample size). Monthly models are not simply quarterly models estimated on larger 
sample sizes. First, monthly and quarterly VAR models tend to use different data 
series for the same concept (e.g., GDP deflator vs. CPI for the price level, GDP 
vs. industrial production for output) and these series will in general behave 
differently. Second, one would generally expect a high-frequency model to 
require a different lag structure than a low-frequency model. This phenomenon is 
familiar to applied researchers. To be concrete, suppose an AR(1) model well-
approximates annual inflation. This does not imply that the corresponding 
monthly model of inflation is an AR(1). Typically, the monthly data will be well-
approximated by an AR model of low order, say an AR(4) and there is no 
compelling reason for the impulse responses of the two models to look the same 
nor for the performance of the lag-order selection criteria to be the same, even if 
the annual AR(1) model is estimated with as many observations as the monthly 
AR(4) model.   

One way of disentangling the effects of the data frequency and of the data 
set on the relative accuracy of information criteria would be to aggregate the 
monthly data to quarterly frequency, while maintaining the same VAR model. 
This proposal is not as straightforward as it may seem because time aggregation 
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destroys the validity of the identifying assumptions used in the monthly structural 
VAR models. Specifically, these models use exclusion restrictions that postulate 
no feedback from one variable to another within a month. Clearly, after time 
aggregation, there will be feedback within the quarter, so we can no longer use the 
same identification scheme. If we did, this would amount to changing the VAR 
model along with the data frequency. 
 We can, however, illustrate the role of time aggregation by conducting a 
similar exercise using reduced form (as opposed to structural) impulse responses. 
The basic idea is to repeat the analysis underlying Table 2 using reduced form 
impulse responses, with the aim of showing, first, that for the original monthly 
data the reduced form VAR results are qualitatively the same as the structural 
VAR results, and second, that time aggregation to the quarterly frequency can 
explain the differences in the rankings between Table 2a and Table 2b. For 
expository purposes we focus on the Eichenbaum-Evans data set. Table 5a and 5b 
below show that indeed there is little difference between the MSE rankings, 
whether we study structural impulse responses or reduced form impulse 
responses. In both case, for the Eichenbaum-Evans data set, the AIC works best.   
 Table 5c shows the results for reduced form impulse responses based on 
the quarterly data obtained by aggregating the Eichenbaum-Evans data set from 
monthly to quarterly frequency. For 80T = the SIC implies the most accurate 
impulse responses; for larger sample sizes the HQC does. This is qualitatively the 
same pattern we found for quarterly VAR models in Table 2b and supports the 
conjecture that the differences in simulation results between monthly and 
quarterly VAR models are mainly a consequence of time aggregation. 
 This leaves the question of why there are differences between the practical 
recommendations for quarterly VAR models and for quarterly VEC models. We 
already stressed that persistence profiles in VEC models are fundamentally 
different statistics from conventional impulse response functions in unrestricted 
VAR models. Another difference is that our VEC models utilize additional 
structure in estimation in that we (appropriately) impose the known cointegrating 
vector prior to selecting the lag order of the VEC presentation of the system. A 
natural conjecture would be that if instead we selected the lag order on the 
unrestricted VAR presentation (as we did for the quarterly VAR  models) and 
imposed the known cointegrating vector only in constructing the persistence 
profiles, our VEC model results might be more similar to those for the quarterly 
VAR models. Additional simulation analysis suggests that this is not the case.   

For expository purposes, we focus on the Johansen-Juselius design. Table 
6a serves as a reminder that for the Johansen-Juselius design – as shown in Table 
2c for the average of all quarterly VEC models – the SIC is the most accurate 
model selection criterion regardless of sample size, when the lag order is selected 
after imposing the known cointegrating vector. Table 6b shows that the SIC is still  
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Table 5: Average MSE Ratio for Impulse Response Estimates by Criterion  
Relative to Model Based on True Lag Order 

 
Eichenbaum-Evans Data Set 

 
(a) Monthly VAR Model: Structural Impulse Responses 

 
T AIC HQC SIC LR1 SLR1 LM1 

240 1.00 1.26 1.35 1.22 1.02 1.17 
300 1.00 1.29 1.48 1.14 1.03 1.11 
360 1.00 1.15 1.63 1.10 1.03 1.08 
480 1.00 1.02 1.94 1.07 1.02 1.05 
600 1.00 1.01 2.13 1.05 1.02 1.04 

 
 

(b) Monthly VAR Model: Reduced Form Impulse Responses 
 

T AIC HQC SIC LR1 SLR1 LM1 
240 1.00 1.12 1.17 1.24 1.03 1.18 
300 1.00 1.19 1.30 1.16 1.03 1.11 
360 1.00 1.11 1.43 1.12 1.03 1.08 
480 1.00 1.01 1.71 1.07 1.03 1.05 
600 1.00 1.01 1.91 1.06 1.02 1.04 

 
 

(c) Time-Aggregated Quarterly VAR Model: Reduced Form Impulse 
Responses 

 
T AIC HQC SIC LR1 SLR1 LM1 

  80 2.05 1.04 0.88 3.10 1.17 1.93 
100 1.19 1.01 1.05 2.37 1.12 1.56 
120 1.06 1.00 1.08 1.92 1.09 1.39 
160 1.02 1.00 1.06 1.50 1.08 1.25 
200 1.01 1.00 1.03 1.34 1.06 1.14 

 
NOTES:  Averages of ratios are calculated as geometric means. 

 
 
the most accurate criterion for all sample sizes, even when the lag order is 
estimated on the unrestricted VAR presentation. In fact, the differences in the 
SIC’s accuracy are extremely small, whether the lag order is determined based on 
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the unrestricted VAR presentation or the restricted VEC presentation of the 
system.   
 
 

Table 6: Average MSE Ratio for Impulse Response Estimates by Criterion 
Relative to Model Based on True Lag Order 

 
Johansen-Juselius Data Set 

 
(a)  Known Cointegrating Vector, Lag Order Estimation on Restricted VAR 

 
T AIC HQC SIC 

  80 1.92 0.63 0.36 
100 1.15 0.72 0.48 
120 1.07 0.85 0.56 
160 1.03 0.94 0.71 
200 1.02 0.98 0.85 

 
 
(b)  Known Cointegrating Vector, Lag Order Estimation on Unrestricted  
        VAR 

 
T AIC HQC SIC 

  80 2.25 0.64 0.36 
100 1.18 0.73 0.48 
120 1.08 0.85 0.56 
160 1.04 0.94 0.71 
200 1.02 0.98 0.85 

 
NOTES:  Averages of ratios are calculated as geometric means. 
 

 
Question 6: How robust are the simulation results? 
 
We now address the sensitivity of our main results to (a) the true lag order, (b) the 
number of variables in the VAR model, (c) the choice of the data sets.    
 
(a) How sensitive are the main results to the true lag order? 
 
One would expect that – all else equal - highly parsimonious lag order selection 
criteria such as the SIC or HQC will tend to be at a disadvantage for large 0p . 
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This conjecture suggests that for a given sample size the accuracy of the AIC-
based impulse responses should improve relative to the HQC- and SIC-based 
estimates (and similarly for the HQC relative to the SIC), as 0p  increases. We 
find no support, however, for the notion that larger values of 0p  for the same 
sample size favor less parsimonious criteria such as the AIC. For monthly VAR 
processes, the AIC tends to be more accurate than the other criteria for all sample 
sizes almost regardless of the value of 0p . Figure 5 illustrates this point. It shows 
the average MSE ratios for alternative horizons h and values of 0,p  given the 
sample size T.  We focus on the accuracy of the AIC relative to the SIC. The first 
panel shows that, even for sample sizes as small as T = 240, the AIC compares 
favorably to the SIC. As T increases, the relative accuracy of the AIC further 
improves. For sample sizes in excess of T = 300 the AIC uniformly dominates the 
SIC for all values of h and 0.p  The greatest gains are achieved for T = 600, as 
shown in the second panel. 

Similarly, for quarterly VAR processes, there is no evidence that less 
parsimonious criteria are more accurate for large 0p . Finally, for quarterly VEC 
models, the SIC dominates the other criteria for all sample sizes, regardless of the 
value of 0p . We conclude that at least over the range of 0p  we considered, the 
value of 0p  is not an important determinant of the relative accuracy of alternative 
lag order selection criteria. 
 
(b) How sensitive are the main results to the number of model variables? 
 
Another question of practical interest is how much our results are affected by K, 
the number of variables included in the VAR system. A simulation study that 
systematically analyzes this question for a given class of models, while 
controlling for h, T, and 0p , would be computationally prohibitive. Based on the 
available evidence, we nevertheless can report that there is no evidence that the 
average MSE ratios in our study are systematically affected by K. 
  
(c) How sensitive are the main results to the choice of data sets? 
 
An obvious concern is how sensitive the main results are to the choice of data sets 
listed in Table 1. We address this question in part by using a comparatively large 
number of alternative specifications. We also conducted a sensitivity analysis 
fashioned after the idea of the delete-one jackknife. Specifically, we recalculated 
the results for each class of models after deleting one data set (and all associated 
DGPs) at a time. This procedure allowed us to construct a crude measure of the 
sensitivity of the results to the choice of data sets.   
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Figure 5 
Relative MSEs by Horizon and True Lag Order 

Monthly VAR Models 
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         NOTES:  See Figure 2. 

27Ivanov and Kilian: VAR Lag Order Selection

Published by The Berkeley Electronic Press, 2005



  

 For the monthly DGPs we find that the rankings in Table 2a are virtually 
unchanged after discarding one data set at a time. Only in one of four cases, the 
HQC and SIC appear more accurate for small sample sizes than the AIC.  
Specifically, when the Eichenbaum-Evans data set is discarded, the HQC (and to 
a lesser extent the SIC) are more accurate than the AIC for T = 240 and T = 300 
by 0.07 and 0.06, respectively. On the other hand, after dropping the Strongin data 
set, for example, the MSE ratio of the SIC and HQC for T = 240 (300) increases 
by 0.04 (0.05) and 0.06 (0.06), respectively. On balance, our results appear to be 
representative. Moreover, other qualitative features (such as the tendency of the 
accuracy of SIC-based estimates to worsen drastically as the sample size is 
increased) are robust. Similarly, for the quarterly VAR DGPs we find that when 
some data sets are excluded, the ranking of the SIC and the HQC for T = 120 may 
alternate. Overall, the rankings in Table 2b are remarkably robust, however. For 
the quarterly VEC models the only difference in results is that after excluding the 
Johansen-Juselius data set, for T = 120 and T = 160 the ranking of the SIC and 
HQC changes, but the differences in accuracy are very small in all cases (0.02 and 
0.01, respectively) and do not reflect important practical advantages of either 
criterion. In the other three cases, the ranking of the SIC is not affected. We 
conclude that we can be reasonably confident that our results and practical 
recommendations are not inadvertently driven by the choice of data sets.   
 As noted earlier, only the VAR models based on the Galí (1999) data set 
employ long-run identifying restrictions, whereas all other models rely on short-
run exclusion restrictions for identification. Thus, it is of special interest to 
investigate whether there are any systematic differences in the results. Table 7a 
shows the average MSE ratios by criterion for all quarterly VAR models 
excluding the Galí data set; Table 7b shows the corresponding results only for the 
VAR models based on the Galí data set. There is some indication that parsimony 
is slightly more beneficial for the VAR models based on Galí (1999), but overall 
the conclusions are similar. In both cases we find that the SIC works best for 
small sample sizes, whereas for larger sample sizes the HQC results in more 
accurate impulse responses than the SIC. 
 

5. CONCLUDING REMARKS 
 
We compared the most commonly used lag-order selection criteria for VAR 
models in terms of the MSE of the implied impulse response estimates relative to 
the MSE based on knowing the true lag order. The criteria included in the study 
were the SIC, the HQC, the AIC, the sequential likelihood ratio (LR) test and its 
modification by Sims (referred to as SLR), and finally the sequential Portmanteau 
(or LM) test. The latter three criteria were evaluated at an individual nominal 
significance level of 1% and 5% each,  resulting  in  a  total  of  nine  criteria.  Our  
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Table 7: Average MSE Ratio for Impulse Response Estimates by Criterion 
Relative to Model Based on True Lag Order 

 
(a) Quarterly VAR Models Excluding Galí (1999) Data Set 

 
T AIC HQC SIC LR1 SLR1 LM1 

  80 2.06 1.34 0.81 2.60 1.18 1.65 
100 1.34 0.95 0.92 1.94 1.08 1.34 
120 1.08 0.99 1.00 1.73 1.07 1.26 
160 1.01 1.01 1.14 1.49 1.07 1.17 
200 1.01 1.01 1.23 1.35 1.07 1.12 

 
(b) Quarterly VAR Models Based on Galí (1999) Data Set 

 
T AIC HQC SIC LR1 SLR1 LM1 

  80 1.09 0.82 0.73 1.24 1.03 0.76 
100 1.13 0.86 0.81 1.26 1.12 0.86 
120 1.15 0.91 0.87 1.27 1.15 0.96 
160 1.20 0.96 0.97 1.28 1.22 1.10 
200 1.21 1.02 1.03 1.30 1.24 1.18 

 
NOTES:  Averages of ratios are calculated as geometric means. 
 
 
simulation study involved a total of 180 design points and supported the following 
main conclusions. First, our results show that that the choice of lag-order selection 
criterion has quantitatively important implications for the accuracy of VAR 
impulse response estimates. In some cases, the MSE of the impulse response 
estimates increased more than five-fold relative to the estimates based on 
knowing the true lag order, and the MSEs of different criteria in some cases 
differed by a factor of eight. Second, we found that, contrary to what one might 
have conjectured, our practical recommendations do not appear to be very 
sensitive to the horizon of interest. The chief determinant of the relative accuracy 
of alternative criteria for a given class of models appears to be the sample size. 
Third, we concluded that no criterion dominates in all circumstances, but the 
results of the simulation study are nevertheless clear-cut and informative and 
allow several practical recommendations for applied researchers.    

We showed that, in general, sequential LR and LM tests do not perform 
well, especially for small sample sizes. The SLR test performs better than the LR 
test in all cases and better than the LM test in most cases. All three sequential 
tests are in turn dominated by one or more of the information criteria. The relative 
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performance of the other AIC, HQC and SIC differs across classes of models and 
types of impulse responses. We focused on three classes of models and impulse 
response functions common in applied work. First, for structural and semi-
structural impulse responses in monthly VAR models, the AIC tends to produce 
the most accurate impulse response estimates for all realistic sample sizes. The 
average reduction in mean-squared error from using the AIC can be as high as 
27% relative to the SIC and 6% relative to the HQC. Second, for structural and 
semi-structural impulse responses based on quarterly VAR models, the HQC 
appears to be most accurate except for sample sizes of fewer than 120 quarters, 
for which the SIC was found to improve accuracy by up to 33% relative to the 
HQC. Third, for persistence profiles based on quarterly VEC models, the SIC 
tends to be most accurate for all sample sizes we considered (with gains of up to 
82% relative to the AIC and 33% relative to the HQC).   

The fact that no one criterion works best for all classes of models should 
not be surprising. We discussed in detail the sources of these differences. It 
should be borne in mind that our simulation results – although based on an 
extensive study - are necessarily tentative and limited by the simulation design. 
We also note that the results may differ if the objective of estimating the VAR 
model is forecasting or the construction of variance decompositions, for example, 
or if the underlying process is of infinite order. Finally, we have postulated 
Gaussian VAR innovations throughout this paper. As noted for example by Kilian 
and Demiroglu (2000), there is considerable evidence of fat tails and skewness in 
the unconditional distribution of VAR residuals and of conditional 
heteroskedasticity in the error term. A study of the effect of such departures from 
normality on the accuracy of lag-order selection criteria is left as an extension for 
future work.   
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