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 IDENTIFICATION OF THE BINARY

 CHOICE MODEL WITH

 MISCLASSIFICATION

 ARTHUR LEWBEL
 Boston College

 Misclassification in binary choice (binomial response) models occurs when the
 dependent variable is measured with error, that is, when an actual "one" response

 is sometimes recorded as a zero and vice versa. This paper shows that binary

 response models with misclassification are semiparametrically identified, even

 when the probabilities of misclassification depend in unknown ways on model

 covariates and the distribution of the errors is unknown.

 1. INTRODUCTION

 This paper shows that binary response models with misclassification of the de-

 pendent variable are semiparametrically identified, even when the probabilities
 of misclassification depend in unknown ways on model covariates and the dis-

 tribution of the errors is unknown.

 Let xi be a vector of covariates that may affect both the response of obser-
 vation i and the probability that the response is observed incorrectly. For iden-

 tification, assume there exists a covariate vi that affects the true response but
 does not affect the probability of misclassification. If more than one such co-

 variate exists, let vi be any one of the available candidates (that satisfies the
 regularity conditions listed subsequently), and the others can without loss of

 generality be included in the vector xi.
 Let y* be an unobserved latent variable associated with observation i, given

 by

 y* - viy + Xl:3 + ei,

 where the ei are independently and identically distributed errors. The true re-
 sponse is given by

 Yi = I(y*- 0),
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 604 ARTHUR LEWBEL

 where I(-) equals one if * is true and zero otherwise. When y5i is observed, this
 is the standard latent variable specification of the binary response model (see,
 e.g., McFadden, 1984).

 Now permit the true response (i.e., classification of observation i) to be ob-

 served with error. Letting yi denote the observed binary dependent variable, the
 misclassification probabilities are

 a(xi) = Pr(yi = I Yi = , xi),

 a*(xi) = Pr(yi = OYi = 1,xi).

 So a(xi) is the probability that an actual zero response is misclassified (i.e.,
 incorrectly recorded) as a one, and a*(xi) is the probability that a one response
 is misclassified as a zero. These misclassification probabilities are permitted to

 depend in an unknown way on observed covariates xi. This framework encom-
 passes models where misclassification probabilities may also depend on vari-

 ables that do not affect the true response, because any covariate xji that affects
 a or a* but not y* is just a covariate that has a coefficient 8j that equals zero.

 Define b(x) as

 b(xi) = [1 - a(xi) - a*(xi)]

 and define the function g to be the conditional expectation of y, which in this
 model is

 g(vi,xi) = E(y Ivi,xi) = a(xi) + b(xi)F(viy + xi), (1)

 where F is the cumulative distribution function of the random variable -e.

 Another model that corresponds to equation (1) is when a fraction a(x) of
 respondents having characteristics x always answers one, a fraction a*(x) al-
 ways answers zero, and the remainder respond with I(vy + x/3 + e ' 0). In this
 interpretation some respondents give "natural responses" that are due to factors

 other than the latent variable, whereas the other respondents follow the latent

 variable model. Although this model is observationally equivalent to the mis-

 classification model, the interpretation of the natural response model (in partic-
 ular, the implied marginal effects) is quite different (see, e.g., Finney, 1964).

 Examples of recent papers that consider estimation of misclassification model

 parameters or misclassification probabilities include Manski (1985), Chua and
 Fuller (1987), Brown and Light (1992), Poterba and Summers (1995), Abre-
 vaya and Hausman (1997), and Hausman, Abrevaya, and Scott-Morton (1998).
 These last two papers provide parametric (maximum likelihood) estimators of
 the model when the function F is known and a semiparametric estimator for
 the case where F is unknown and the misclassification probabilities a and a*
 are constants (independent of all covariates). They also show that when F is
 unknown, the coefficients of covariates that do not affect the misclassification
 probabilities can be estimated.
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 IDENTIFICATION OF THE BINARY CHOICE MODEL 605

 This paper shows that (given some regularity) the entire model is identified

 even when the functions a, a*, and F are unknown.

 Assumption Al. Assume for all x that 0 ' a(x), 0 ' a*(x), and a(x) +

 a*(x) < 1. Assume that v, conditional on x, is continuously distributed. As-

 sume that F(w) is three times differentiable with f (w) - dF(w)/dw 0 0 and

 f '(w) = df (w)/dw. Assume I y I 1 and, for all /3* # ,B, prob ([ f '(vy + x,()/
 f(vy + x,/)] + E[f'(vy + x/3)/f(vy + x,/3)Ivy + x/8*]) > 0.

 The assumption that the sum of misclassification probabilities is less than

 one is what Hausman et al. (1998) call the monotonicity condition, and it holds

 by construction in the "natural response" form of the model. Letting I y 1 - I is
 an arbitrary free normalization, as long as y # 0. Only the covariate v is as-

 sumed to be continuous. The final condition in Assumption Al is a parametric

 identification assumption that would provide identification of /3 from the score

 function if f was a known function and there was no misclassification.

 Define the function #(v, x) by

 (v, x) = g(v, x)/dv sign [E ( (v, x) ) (2)
 ag(v, x)Iav av

 Let r(v, x) be any function such that r(v, x) ' 0, sup r(v, x) is finite, and
 E[r(v,x)] = 1.

 LEMMA 1. Given Assumption A1, 0b(v, x) = f '(vy + x,3)/f (vy + x,/), y
 sign(E[r(v,x)ag(v,x)/1v]), and(3 = argmin,*E[(O(v,x) - E[4(v,x)|vy +
 x/8*])2] . Also, / = E(r(v, x)[ad (v, x)/&x]/[jao(v, x)/av])y.

 This lemma shows identification of the model coefficients. Estimation based

 on this lemma could proceed as follows. First, estimate g as a nonparametric
 AA

 regression of y on v and x. Next define 0 by equation (2), replacing g with g
 and the expectation with a sample average. Then let A equal the sign of any

 weighted average derivative of E(y I v, x) with respect to v (using, e.g., the es-
 timator of Powell, Stock, and Stoker, 1989).

 The lemma suggests two different estimators for /. Let ((vy + x/3*)

 E[0(v,x)jvy + x,/*] for any ,/* and let A(v, + xl3*) be a nonparametric re-
 gression of (v, x) on vA + x/3*. The estimate /B is then the value of /3* that
 minimizes the sample average of kb(v,x) - (VA + x/3*)] 2. This is essentially

 Ichimura's (1993) linear index model estimator, using q(v, x) as the dependent
 variable.

 Another estimator for / suggested by the lemma is to let ,/ equal the sample
 average of r(v, x) [(v,x)/4x]/ (v, x)/Ov] A. This is an average derivative
 type estimator, which is only feasible for continuously distributed regressors
 because of the need to estimate the term a A(v, x)/&X.

 More generally, Lemma 1 shows that 0b(v, x) = e(vy + x,/), so /3 can be
 estimated using any of a variety of linear index model estimators, treating (v, x)

This content downloaded from 150.108.71.38 on Thu, 19 Apr 2018 17:25:22 UTC
All use subject to http://about.jstor.org/terms



 606 ARTHUR LEWBEL

 as the dependent variable. For example, the method of Powell et al. (1989)
 could be used to estimate the coefficients of the continuous regressors and that

 of Horowitz and Hardle (1996) for the discrete regressors. The limiting distri-

 butions of these estimators will be affected by the use of an estimated depen-

 dent variable b (v, x) instead of an observed one. However, all of these estimators
 involve unconditional expectations, estimated as averages of functions of non-

 parametric regressions. With sufficient regularity (including judicious selection

 of the function r, e.g., having r be a density function that equals zero wherever

 4 might be small), such expectations can typically be estimated at rate root n
 (see, e.g., Newey and McFadden, 1994). Also, some relevant results on the uni-

 form convergence and limiting distribution of nonparametric kernel estimators

 based on estimated (generated) variables include Andrews (1995) and Ahn
 (1997).

 Define w = vy + x/3, which by Lemma 1 is identified. Let f,(w) denote
 the unconditional probability density function of w. Define h by h(w, x) =

 E(y w, x) = a(x) + b(x)F(w). Define the function q/ by the indefinite integral

 ( w 2h (w, X)/IW2 v
 P w)E tAh (w, x)/w jw

 (3)

 bl, (t) = exp fp (w.) dzr

 Let Qlw and Qle denote the supports of w and -e, respectively. Define the con-

 stant c by c = J" Q (w) dw.

 LEMMA 2. Given Assumption A1, f(w) = q-(w)/c and b(x) = E([3h(w, x)/

 aW]/Iq(w)lx)c. If Qle is a subset of fli, then c = [qr(w)1f,(w)].

 This lemma shows that the density functionf(w) and the misclassification
 function b(x) are identified up to the constant c, and the constant c is also iden-
 tified (and can be estimated as a sample average), provided that the data gen-
 erating process for w has sufficiently large support.

 Estimators based directly on Lemma 2 would consist of the following steps.

 First, construct w = vy + xf3 and let h (w, x) be a nonparametric regression of y
 on w and x. Next, let ;(w) be a nonparametric regression of [2h (w, x)/w2]/
 [4h(v, x)/w ] on w and define the function j (w) = exp f (w) dw. The scalar c

 then equals the sample average of r/jw(w), wheref, is a nonparametric es-
 timator (e.g., a kernel estimator) of the density of w. Finally, fw(w) = yl(w)lc,
 and b(x) equals c times a nonparametric regression of [ah(W, x)/ W]/&(P) on
 x. The resulting estimates should be consistent, as long as uniformly consistent
 nonparametric estimators are used at each stage. Note that consistency may re-

 quire trimming (possibly asymptotic trimming) to a compact subset of Qlw, be-
 cause of division by the densityfw.
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 IDENTIFICATION OF THE BINARY CHOICE MODEL 607

 The preceding lemmas show that the marginal effects a Pr(y = 1 I v, x)/ax =
 f(vy + x/3)/3 and a Pr(y = 1 I v, x)/av =f(vy + x,8)y are identified and that the
 misclassification error function b(x) is also identified. If a(x) = a*(x), that is,

 if the probability of misclassification does not depend on y, then Lemma 2 im-

 plies that the misclassification probability a(x) = a*(x) = [1 - b(x)]/2 is also
 identified.

 Instead of using Lemma 2, log derivatives of b(x) (and hence of a(x) and

 a*(x) when they are equal) with respect to continuously distributed elements
 of x can be directly estimated, without requiring numerical integration, the "large

 w support" assumption, or the generated variable w, by the following lemma.

 LEMMA 3. Let xj be any continuously distributed element of x and let f3j be
 the corresponding element of /3. Let Assumption Al hold and assume that b(x)

 is differentiable in xj. Then

 a In b(x) = a2 g(v, x)/avaxi )
 ax V ag(v, x)/vav

 By Lemma 3, a nonparametric regression of [a2g(v, x)/avax1]/[ag(v, x)/av]-

 $(v, x)/j on x is an estimator of a In b(x)/axj. Dividing this estimate by -2
 yields an estimate of a In a(x)/axj and a In a* (x)/axj when a(x) = a*(x).

 Next, consider identification of a(x) and a*(x) when they are not equal.
 Let F (w x) denote the conditional cumulative distribution function of w given

 x, let f2(w x) = aF,(w x)/aw be the conditional probability density function
 of w given x, and let flI x denote the support of w given x. Let 0(x) = 1 -
 E [ f (w)Fw (w I x)lf,,(w I X) I X].

 LEMMA 4. Let Assumption Al hold and assume that fe is a subset of flIx-
 Then a(x) = E[h(w,x)Ix] - b(x)0(x), a*(x) b(x) -1 + a(x), and F(w) =
 E([h(w, x) - a(x)]/b(x) Iw).

 Estimation of 0(x) requires extreme values of w given x, and hence of v, to
 be observable. Some intuition for this result comes from the observation that

 g(v, x) a(x) for very large v and g(v, x) 1 -a*(x) for very small v. Hence,
 analogous to the estimation of c, data in the tails are required for estimation of
 a(x) and a*(x). Estimation proceeds as in the previous lemmas, that is, employ-

 ing w in place of w, nonparametric estimation of the density function fj(w x),
 and nonparametric regression to estimate conditional expectations.

 Taken together, these lemmas show that the entire model is identified. The
 parameters y and /3 can be consistently estimated (with regularity, at rate root
 n), and the functions a(x), a*(x), and F(w) can be consistently estimated non-
 parametrically. The estimators provided here are not likely to be very practical,
 because they involve up to third-order derivatives and repeated applications of
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 608 ARTHUR LEWBEL

 nonparametric regression, and they do not exploit some features of the model
 such as monotonicity of F. However, the demonstration that the entire model is
 identified suggests that the search for better estimators would be worthwhile.
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 APPENDIX

 Proof of Lemma 1. ag(v, x)h3v - b(x)f (vy + x13)y, b(x) > 0, andf(vy + x3) > 0,
 so y = sign[3g(v,x)/3v]. Here i2g(v,x)/dv2 = b(x)f'(vy + x,8)y2, and y2 1, so
 q$(v, x) =f'(vy + x,/)/f(vy + x,4). Let e(vy + x3*) = E [0(v, x)| vy + x4*]. It follows
 from the previous expression for 4 that /(v, x) and the final equality in Assumption Al

 that prob[ b(v, x) = e(vy + x4*)] > 0 for all 13 * /3 , and 0b(v, x) = 5 (vy + x/3), so ,
 arg min,3* E[(4(v, x) - E [4(v, x)| vy + x13*])2].

 The alternative expression 8/y = [Fa(v, x)/ax]/[a& (v, x)flv] follows because 4 de-
 pends on x and v only through vy + xf3, so E(r(v,x)[aE(v,x)/ax]/[ao(v,x)/lv])y-
 E[r(v, x)f3/y]y = /B. U
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 IDENTIFICATION OF THE BINARY CHOICE MODEL 609

 Proof of Lemma 2. ah(w,x)/&w = b(x)f(w), a2h(w,x)/Iaw2 = b(x)f'(w), so
 [32h (w, x)/3w2]/[ah (w, x)/dw] = f '(w)/f (w) E([32h (w, x)/3w2]/[iJh(w, x)/3w] w).

 Then ifr(z) - exp[ff '(zu)/f(z) dzu] = f (m)c, where In c is the constant of integration.

 E ([dh (w, x)law] /t (w) | x)/c = E ([b (x)f (w)] l/> (w) I x)lc

 = E([b(x)f (w)]/[ f (w)c] Ix)/c b(x).

 Here E[ (w)lfw (wf ] = fQ,[ (w)lf,, ( wf(w) )dw = fnd f (w)c dw
 c, where the last equality holds as long as flQ contains every value of e for whichf (e) is
 nonzero.

 Proof of Lemma 3. &2g(v,x)/1av3xj =f (yv + fx)ab(x)/&xj + b(x)f'(yv + /x)/8j, so
 [a2g(v,x)/1vaxj]/[ag(v,x)/1v]= [b(x)/dxj]/b(x) + [f'(yv + /x)/f(yv + 3x)]/8j
 a ln b(x)/axj + (v, x)f8j. The lemma then follows immediately.

 Proof of Lemma 4. Let afl,x denote the boundary of the support fl,x Applying an

 integration by parts gives E[F(w)|x] = f,w,x F(w)fw(w|x) dw = F(w)Fw (w |x) |=wan ,-
 fn,, ff(w)Fw(w lx) dw. Having fQe be a subset of lw x ensures that F(w)F" X
 (WIX)I,WO,I = 1, and so 0(x) = 1 - f01,x[f(w)Fw(wlx)/fw(w)x)]fw(w)x)dw
 E[F(w)|x]. Therefore, E[h(w,x)lx] =a(x) + b(x)E[F(w)lx] =a(x) + b(x)6(x), which
 gives the identification of a(x). The expression a*(x) b(x) - 1 + a(x) then follows
 from the definition of b(x), and h(w, x) = a(x) + b(x)F(w) is then used to obtain F(w).

This content downloaded from 150.108.71.38 on Thu, 19 Apr 2018 17:25:22 UTC
All use subject to http://about.jstor.org/terms


	Contents
	603
	604
	605
	606
	607
	608
	609

	Issue Table of Contents
	Econometric Theory, Vol. 16, No. 4 (Aug., 2000), pp. 465-620
	Front Matter
	Nonparametric Estimation of Additive Nonlinear ARX Time Series: Local Linear Fitting and Projections [pp. 465-501]
	Efficient Estimation of Generalized Additive Nonparametric Regression Models [pp. 502-523]
	Asymptotic Efficiency of the Two Stage Estimator in I(2) Systems [pp. 524-550]
	Semiparametric Estimation of Multiple Equation Models [pp. 551-575]
	Nonparametric Significance Testing [pp. 576-601]
	Miscellanea
	Identification of the Binary Choice Model with Misclassification [pp. 603-609]

	Book Review
	Review: untitled [pp. 611-617]

	Problems and Solutions
	Problems
	Simple Applications of the Cox-Tsiatis Result on Unidentifiability of Dependent Competing Risks Models with Regressors [p. 619]
	A Necessary and Sufficient Condition for the Convergence of the Sum of Weighting Random Variables to a Normal Distribution [p. 619]


	Editorial Note [p. 620]
	Back Matter



